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Steady Flux in a Continuous-Space 
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We examine the steady-state flux of particles diffusing in a one-dimensional 
finite chain with Sinai-type disorder, i.e., the system in" which in addition to the 
thermal noise, particles are subject to a stationary random 6-correlated in space 
Gaussian force. For this model we calculate the disorder average (over con- 
figurations of the random force) flux exactly for arbitrary values of system's 
parameters, such as chain length N, strength of the force, and temperature, 
We prove that within the limit N>  1 the average flux decreases with N as 
(J(N))  = C/x/-N and thus confirm our recent predictions that the flux in the 
discrete-space Sinai model is anomalous. 
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1. I N T R O D U C T I O N  

Suppose an infinite line of integers and a particle which moves one step 
each unit oftime. Being at any chain's site j, -- oo < j <  oo, it moves to j +  1 
or j - 1  with probability pj or q j=  1 - p j ,  respectively. The set {&} 
consists of independent identically distributed random variables, bounded 
away from 0 and 1 with expectation 

and finite variance 
p j  "~2 

0 < o - 2 = E  l o g l - - ~ j  ) < ~  
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This model of a random walk in a random environment was proposed 
by Sinai, ~ who has proved rigorously that the mean-square displacement 
(Xz(t)) of a particle for time t sufficiently large is proportional to log4(t), 
in a striking contrast to the random walk in regular systems (all pj = 1/2) 
with (X2( t ) )  oc t. 

The origin of this anomalous behavior can be readily understood on 
physical grounds (see, e.g., refs. 1 and 2). In one dimension it is always 
possible to define a potential energy function U(j) so that the probabilities 
pj satisfy the detailed balance condition, 

PJ = e x p [ U ( j ) -  U(j+ 1)] 
1 -Pj+I 

The Sinai model represents a diffusive process in a potential U(j). For a 
segment of size K this potential grows with K in proportion to Y',ff= 1 ~j, 
with ~j being independent random variables, ~j= ln[&/(1 - & ) ] .  The fluc- 
tuations in U(K) will grow like ~ for a typical environment {pj}. There- 
fore, on each scale of size K one will have, typically, a potential barrier of 
heNht x/K. The time required for a particle to diffuse over a barrier of size 
x /K  is given by the Arrhenius law, tK ~ exp(x/K). This suggests that on a 
given sample the displacement X(t) of a particle in time t should grow like 
ln2(t) for typical realizations of an environment {&}. Thus, one can expect 
(X2( t ) )  oc log4(t). 

Following Sinai's work, this remarkable confinement of a random 
walk due to the random environment has attracted considerable attention. 
Different dynamical properties of this model, such as behavior of the diffu- 
sion front, the limit distribution, and the probability of presence at the 
initial point, have been discussed in great detail (see, e.g., refs. 2-5). In 
addition, this model was generalized (2'6) to include spatial correlations 
between the transition probabilities pj. In ref. 6 these correlations were 
introduced directly into the statement of the problem, while in ref. 2 the 
correlations were induced by the particular algorithm--rarefactions of the 
Thue-Morse sequences, (2) which was invoked to constract the environment 
{&}. In both cases it was shown (2'6) that the logarithmic law for the 
second moment of particle displacement still holds, (XZ(t)) ~ 1og~(t), but 
the exponent v is model dependent and might be different from the value 4. 
The behavior of the higher moments, however, might be effected dramati- 
cally due to spatial correlations in {pj}. 

In ref. 7 we examined some other aspects of the Sinai model. Consider 
a finite chain with some concentration of noninteracting particles, which 
execute random walk with Sinai hopping rules. Concentrations of particles 
at the endpoints, P(X= O, t) = Po and P(X = N, t) = 0, are kept fixed for all 
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times. In such a system there exists a flux of particles to the trap at point 
X= N, which, for a fixed environment {Pi}, approaches at infinite time 
some constant sample-dependent value J(N). This value is given by 

Po 
J(N) - (1) 

2~(N) 

with 

~(N)=[1 +Pl+P,  P2+ ... +PlP2"''PN-_I] (2) 
ql qlq2 qlq2 "''qN--lJ 

For the discrete-space model we could not take the average of J(N) 
exactly even in the simplest case of a "two-state" distribution function 

p(pj) = �89 p) + 6(pj + p)], 1 ~ < p < l  

However, analyzing the contributions of different realizations of an 
environment {pj} to the average flux, we were able to bound (J (N))  as 

A B 
<~ (J (N))  < ~ - -  (3) N1/2 ln2(N) N 1/2 

where A and B are some N-independent constants. Therefore, we were able 
to deduce (v) that the average steady flux behaves as (J (N))  oc O(N)/x/N , 
where ~b(N) is either a constant or decreases with N slower than any power 
of N. This result shows that the average flux behavior in the Sinai chain is 
anomalous. One can easily notice that (J (N) )  is supported by atypical 
realizations of {pj}. Flux stemming out of the typical realizations of {pj} 
behaves as Jtyp(S)= exp{ ( ln [J (U)] )}  oc exp(-x/N),  i.e., the behavior of 
the disorder average flux (J (N) )  differs markedly from the behavior of 
J typ(N)  �9 

Next, consider the flux of particles in the regular diffusive system in 
which all p j=  1/2. The Fickian formula for the flux in such a system 
follows from Eqs. (1) and (2), JF(N) oc 1/N. The comparison of Fickian 
flux with our prediction is quite surprising--in the present model with 
logarithmically confined random walk and exponentially large mean 
passage time one has the flux which is essentially greater than the flux in 
the regular system. In ref. 7 we analyzed the origin of such a behavior and 
have shown that it is supported by atypical bounded realizations of the 
random environment. 

In the present communication we examine the behavior of the disorder 
average flux in the continuous-space analog of the original Sinai model. We 
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evaluate the exact representation of (J (N) )  which holds for an arbitrary 
chain length N. We prove that in the large-N limit the average flux follows 
the dependence ( J ( N ) ) =  C/xfN, where the prefactor C is determined 
exactly. 

2. BASIC  E Q U A T I O N S  

The continuous-space analog of the Sinai model is provided by the 
Langevin equation (see, e.g., ref. 3) 

dX 1 F{X} +~(t) (4) 
dt 7 

where 7 is a friction coefficient, t/is the thermal noise, 

r/ ( t )  = O, q(t) q(t')=2T6(t-t') 
7 

and F{X} is a stationary random force which is a Gaussian white noise 
with 

(F{X})  =0, (F{X} F { X ' } ) = F 6 ( X - X ' )  

Here and henceforth a bar refers to the thermal averages for a fixed 
environment F{X}, whereas brackets stand for an average on the 
configurations of the random force. 

The probability density P(X, t) of the position X of the particle at time 
t satisfies, for a fixed environment F{X}, the following Fokker-Planck 
equation: 

~P(X, t) O2p(x, t) 1 a[P(X, t) F{X}] 
Ot D~ OX 2 ~ OX 

where D O is the diffusion constant in the absence of disorder, Do = T/7, T 
being the temperature. 

To calculate the steady-state flux we have to solve 

d2P(X) 1 d[P(X)F{X}]  
- -  - o  (5 

dX 2 T dX 

subject to the boundary conditions 

P(X= O) = Po, P(X = N) = 0 
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Then the flux for a fixed environment F{Z} will be obtained from the 
equation 

J ( N ) = - D o  dX 

Solving Eq. (5), we 
sample-dependent flux: 

where 

evaluate the following explicit formula for the 

DoPo J(N) = r - ~  (6) 

z(N)= fUdr exp I -  l f~ d~' F(r (7) 

Equations (6) and (7) are simply the continuous-space versions of Eqs. (1) 
and (2). 

In the remainder we will proceed as follows. First, we will calculate 
explicitly all the moments of the random function r(N) in Eq. (7). Then we 
will restore the generating function, 

q~(p, N) = (exp[ -pv(N)]  } 

Eventually, the steady-state average flux will be obtained as 

(J(N) } = DoP o = OoP o dp ~(p, N) (8) 

. M O M E N T S  ( r  i ( N )  ) 

By definition 

( '#(N'}=;~'"fo ~[ d ~ k / e x p [ - -  1 J '~ e=, ~k~ fo dr (9) 

To carry out the averaging of the exponent in Eq. (9) it is convenient 
to introduce a step function 

and rewrite Eq. (9) as follows: 

v for ~ ' ~ k  
otherwise 

t J �9 ~ [ - ~ f o  ~ ) ~ -  o(~_ 
0 k = l  k = l  

822/'73/'1-2-25 
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Averaging the exponent, we get 

J 

o .  ,10, 

where we use the notation ~ = F/2T 2. 
Note that the integrand in Eq. (10) is the symmetric function of 

variables 4k. Therefore, choosing the sequence N~> 41 >/42 >~ 43 >~ "" >/ 
~N>0,  we can express the j-fold integral in Eq. (10) as 

k ~ l  

Performing the integrals in Eq. (11), we are led to the following 
recursive relations for the moments: 

o ~ j ( T , J ( N )  , v(j) [exp(~Nj2)_  13 ~=r-~ 
1 J - 1  

r(2j) 51 ~"(*m(N) ) C~,V(j + m) (12) 

where Cm and F(j) are the binomial coefficients and the gamma function, 
respectively. To calculate the moments ( r J ( N ) )  explicitly, we note that 
Eqs. (12) have the formal solution 

J 

(zJ(N)) = ~-J ~ Ak(j) exp(~Nk 2) (13) 
k = 0  

where A~(j) are N independent constants. 
The coefficient Aj(j) in Eq. (13) is obtained trivially--one can see that 

the leading large-N term in Eq. (13), Aj(j) exp(~Nj2), is simply the first 
term in the rhs of Eq. (12), i.e., 

v(j) 
Aj(j) = F ( 2 j )  

The second coefficient, Aj_I(j) ,  stems from the leading term of the 
previous moment, ( r J - ~ ( N ) ) .  It is easy to see that 

v ( j )  
A j_  , ( j )  = - 2 j  v(zj---)) 
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The coefficient A/_2(j) is defined by the leading term of the moment 
{v / 2(N)) and the second term of the moment ( rg- l (N)) ,  

1 

A/ 2(J)-  F(2j) [-Cj:IF(2j-I)A/-2(J -1) 

j(2j- l) F(j) 
+ CJ 2F(2j-Z) Aj_z( j-2)I-  

V(2j) 

Evaluation of the remaining coefficients is a tractable combinatorial 
problem. Performing consequent calculations and taking into account the 
initial condition ( ~ ( N = 0 ) ) = 0  for n~>l, we deduce the following 
formula for the moments of an arbitrary integer order: 

(~J(N))=o: /F(J) {m~ (-l)mC2 
r (2j)  o 

x exp[~N(j-m) 2] --~ (2 1)J CfJ (14) 

One can easily verify this by the direct substitution of Eq. (14) into the 
recursive relations in Eq. (12). This is, in essence, the basic mathematical 
result of the present paper. It suffices to derive the generating function of 
(~J(N)) and, eventually, the average steady flux. 

4. GENERATING FUNCTION OF M O M E N T S  A N D  THE 
AVERAGE FLUX (J(N)) 

Making use of the identity 

exp(ctNj 2) - 2 f~  ( -x2  ) (~N)1/2 dx exp - ~ -  cosh(2xj) 

we can cast Eq. (14) into the following compact form: 

(r/(N)) =F(j+ 1/2)(c~N) m dx exp ~ -  sinh2J(x) 

Consequently, one gets for the generating function 

+(p, N)=  + ( - P ~  {z/(N)) 
+--~o/'(J + 1 ) 

2 ;0 (+) - (~N)1/2 dx exp - ~  

(15) 

(16) 
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The latter equation, however, cannot be applied directly for the 
calculation of (J (N))  in Eq. (8), since the orders of integration in Eqs. (8) 
and (16) cannot be interchanged. On the other hand, it is quite evident that 
qS(p, N) is a decreasing function of the parameter p. It is easy to see that 
the generating function can be bounded from above as 

0 r ~ )  ~/2 2 ~ ( I2 (p)1/2 sinh(x)] �9 (p, N) ~ Jo dx cos 

(~N)~/2 o 

where Ko(z ) is the McDonald function (8) of zeroth order. In the limit of 
large p one has explicitly 

1 t/0~\ 1/4 
q ) ( p , N ) ~ ~ p )  exp [ - -2  (P)l/21 

i.e., ~b(p, N) drops off with p not slower than exp(-x/p).  
To find a more plausible representation of ~b(p, N) than that in 

Eq. (16) we invoke the Kontorovich-Lebedev (KL) transform, (8) given by 
the pair of inversion formulas, 

g(y) = f (x)  K,x(y) dx 

I o  - 
f(x) = 2rc-Zx sinh(x) g(y) K~(y) dy 

Y 

Here Kix(y ) is the McDonald function of imaginary parameter, given, 
for instance, by 

Kix(Y) = Jo  e x p [ - y  cosh(t)] cos(xt) dt 

Let us define 

g(y) = ~ [ y  =- 2(ply) 1/2, N] 

and calculate f (x)  from the second KL formula. This yields 

f (x)  rc 
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Next, inserting the obtained f(x) into the first KL formula, we obtain 
for the generating function 

We are now ready to evaluate the enclosed representation of (J(N)), 
which holds for an arbitrary value of N. Integrating Eq. (17) over p from 
0 to co, one gets for the flux 

2DoPo~7~ 2 foo ( --eNx2"]-y ] x coth(x) (18) (J(N)) - 3o dx exp 

The leading term in the large-N expansion of (J(N)) can be readily 
estimated. To do this, let us note that x coth(x) for arbitrary positive x can 
be bounded as 

1 ~< x coth(x) ~< 1 + x 

Therefore, the following lower and upper bounds on (J(N)) are valid: 

( = VJ 2 (= ( VJ21 
PoDo\--~) <--.(J(N))<--.PoDo\~-~] II+\~N] ] 

These bounds coincide in the limit N>> n/~ and therefore define the 
leading large-N term in (J(N)) exactly. It is also possible to write down 
an explicit large-N.expansion of (J(N)) and thus define the correction 
terms. This is given by 

f ~ \~/2 I ] ,,=2 F(n + 1) B2. (19) 

where B2n a r e  the Bernoulli numbers. 
Reintroducing the original dimensional parameters Do= T/7 and 

~=F/2T 2 into Eq.(19) we obtain for the average flux the following 
expansion: 

=7\Y- J 3rS 15r S  63r3N (20) 

5. C O N C L U S I O N S  

To conclude, we have shown rigorously that the average steady-state 
flux of particles in a finite one-dimensional system with Sinai-type disorder 
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is essentially non-Fickian. We have evaluated the exact formula for the 
average flux, which holds for arbitrary values of the system parameters, 
and have analyzed its asymptotic behavior. We have proved that for long 
chains, N>> 1, the average flux is described by ( J ( N ) )  = C/x/-N, where the 
prefactor C is determined exactly. 
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